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Abstract—Using estimates of the strain field a new refined version of the linear theory of isotropic
plates is constructed. The theory is expressed in terms of the same independent parameters of
displacements as in the first-order shear deformation theory. The accuracy of the strain energy in
this theory is of the order (h/L)* (h—thickness, L—wavelength of deformation patterns) whereas
the classical theory of plates has accuracy of the order (/L)% The results of the present analysis
provide evidence that some of the earlier proposed higher-order theories of isotropic plates are
based on an incorrect hypothesis for the displacement field.

I. INTRODUCTION

Recently, many different higher-order theorics of elastic plates have been proposed. The
formulation of these theorics, which are aimed at not-so-thin plates or at stress concentration
problems, has been based upon ad hoc assumptions for the displacement ficld or for the
stress ficld. Some examples of such theories are presented in the papers by Mushtari (1959),
Kgczkowski (1968), Jemiclita (1975), Reissner (1975), Lo er al. (1977, 1978), Levinson
(1980), Reissncr (1983), Preusser (1984), Lewinski (1987) and Chen and Archer (1989). For
details and for more complete lists of references sce the reviews by Reissner (1985) and by
Lewinski (1986, 1987). In a similur way, refined theories for the case of composite
laminated plates have been developed. An account of the generalization of theories for this
type of plate was given by Librescu and Reddy (1989).

In the theories by Mushtari (1959), Kgczkowski (1968), Jemielita (1975), Reissner
(1975), Levinson (1980) and Lewinski (1987) the displacement field for the in-plane dis-
placements is assumed to be of the form {(z—out-plane coordinate)

Uy = g+ 4260y, (= 1,2).

Next, using the conditions that the transverse shear stresses should vanish on the plate top
and bottom surfaces and assuming that the normal strain e.. is equal to zero (or an

equivalent hypothesis), the parameters ziz, are expressed by the shearing strains in the normal
direction. Although it leads to simplified theories which seem to be useful for practical
purposes some corrections in the basic hypotheses are needed.

In this paper we abandon assumptions for the displacement or stress field. A linear
theory of isotropic plates is gencrated by means of estimations in a global sense. Starting
from three-dimensional equations of elasticity (Section 2) the estimations for components
of the two-dimensional strain field are established (Section 3). In Section 4 we show a
method for the construction of a simple refined theory of plates which has only five
independent parameters of the displacement field and which differs from those proposed
carlier. Furthermore, we give clearly the conditions which have to be met to ensure the
accuracy of the plate theory. Finally, we point out that in order to construct the consistent
higher-order theory the hypothesis e.. = 0 (or an equivalent hypothesis) should not be

. . L 3 .
used. The correct relation which allows the elimination of the parameters u, is presented.
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For simplicity's sake in the analysis of estimations we omit consideration of loads
distributed over the faces of the plate. Moreover, our analysis is restricted to the regular
boundary conditions (Koiter, 1970).

2. BASIC EQUATIONS

Let x* be an orthogonal curvilinear coordinate system on the middle surface of a plate
and x* = - denotes normal distance from this surface.

With reference to this coordinate system, the field equations of the linear theory of
elasticity constitute the following set of equations (Greek indices range over 1, 2; Latin
indices range over 1, 2, 3, unless specifically noted otherwise):

the strain-displacement relations

Cox = Moo/ Ay —uy/p,. (2 3 P H
¢y = Biu.+Biu,, (2
Cry =, dy i 3)
oy = Uy g, 4)
where
Bl [ =/ A+ lpy. (x# ), (&}
oy = —A /(A Ay, (2 # ), (6)

e,; arc physical components of the strain tensor, «, are components of the displacement
veetor U, A, are the Lamé coeflicients and p, are radii of curvature of the lines x* = constant
and x' = constant, respectively ;

the stress-strain relations

2G v
Gy = l‘_"; (ex: -f-t’(’;m)-{— '{:";gjjs (1 # {£)~ (7)
6, = Ge,, (2 #)). (%)
ey = = o (et es) + (1= 20260 —vays, 9)

where a,, are physical components of the stress tensor, G = E/[2(1 +v)]. £ is the Young's
modulus, v is Poisson’s ratio ;

the equilibrium equations

Ol As— (=03 Pp+ g Ap=20,4/p,+ 003+ X, =0, (a# f), (10)
Bio+Biay+ay,:+X, =0, (i

where
B, f=[.A.~flpy. (x# ), (12)

X, and X, are components of body forces per unit volume.
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Apart from these equations we shall need an additional relation which will be used to
transform eqn (10) into an alternative form. The derivation of this relation is shown below.

After differentiation of the displacement vector U = u,g,+ u.g,-+u;n and making use
of the strain—displacement relations {1)-(4). we may derive the following relations:

U.x = A,{e,,g,+(e.3/2+ﬂ,)gg+(e,3-uu)n], (fl # B)v (13)
where
Q. a=1,
Q, = {_“Q. s (14)
= }(Byu:—Biuy). (13)

The unit vectors (g,.g., n) represent the base vectors of the coordinate system (x* z), and
Q is the rotation about the normal n.
Since the order of common partial differentiations is interchangeable we can write

U",p = Uﬂg,. {@#3) (16)
When we differentiate (13) with respect to x# and make use of (16), we find that
eaﬂ.jf/Aif - 203(4/”: = 2["{!/1..xf“4: - ((‘x'x - e,‘!{i)/p[i - Q'XJI/AﬁI- (a # ﬂ)' (l 7)

With the help of (17) and the stress-strain relations (7)-(9) the alternative forms of
the cquilibrium cquation (10) become

-

v
Cpy 3 = = I-;\; ("II +"22).u/Ax - (’"l'":viaa].\,x//'x +2Q:.II/Aﬂ—'Xa/Gv (1 # ﬂ)~ (18)

and

| —v
0.5ve,y 3 = e33./A,— a6 0330/ A+ V8, 4/ Ay —0.5vX,/G, (a # ). (19
Let the displacements, the strains, the rotation about the normal vector and the stresses
be represented as series with respect to z:

=t 2/ Vit -+ E R ' (20)
4 i k %

ey = eyt zfllg+ -+ Klg+ -, 2n
[ t k

Q=w+z/llw+ - +XKw+---, (22)
0 1 * k

6, =0,+z/lo,;+ -+ [klg,+ -, (23)

When we apply (20)-(22) to the strain-displacement relations (1}-(4) and to eqn (15),
we obtain the two-dimensional rclations

f:m = :‘1.:/‘41 ":‘ﬂ/f’xv (d # p) (24)
§12= B e+ Bt iy, (25)

k k+1

Eyy = Ik‘).x/Ax + Uy (26)
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£33 = U, (27)
@ = B us— B 1)) (28)
In the above and the following formulae the index k takes the values 0,1,..., unless
otherwise stated.
The equation (26) may be written in the alternative form
k+ 1 k k
U, = 813“".‘.1/‘4x~ (29)
or after using (27)
k+2 k+1 K
U, = &, _EJ}.x/Ax . (30)
By inserting the right-hand side of (29) into (28), we find that
&' = UBy £y =By £y, (31)
When we substitute the right-hand side of (30) into (24) and (25), we have
k+2 kw1 k + | k
C:u = (5:} '—5)‘\_1/"‘1).1//‘1 - (k‘:ﬂ} “‘131_\,/1/-’111)/1’:‘ (x # M), (32)
k2 kvl k + k
£2 = Bl (en —&yyafdy)+ B, (l;H 1’ —&aa/4y). (33)
The two-dimensional form of eqn (9) becomes
k v k k k
£3; = — = (&) +e22) + (1 =2v)/[2G( —v)]o ;. (34)
Integrating eqn (18) we obtain
€3 '—'-‘J\_fx d:+C, (35)
where f, represents the right-hand side of (18) and C is an arbitrary constant.
The function f, can be written in the form of a series
a L
Si=Sfarz/ Ui e, (36)

in which },, },‘ ...do not depend on z.

Using the condition that the transverse shear strains e, should vanish on the plate top

(z = h/2) and bottom (z = —h/2) surfaces, where & is the thickness, yiclds

en =[R2 o+ hI@2Y fod ]+ W ok 22 St

where
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- i 2 & k v ok k 3
ksx; = fz = - 'l__—'; (£H+822).:f‘4: - (—l__v)—G"GSLz/Az'}'zwx.ﬂ[Aﬂ_Xx/G’ (1 # ﬁ)e (38)
(:) a=1
&, ={ . (39)
-, a=2
({’, is defined by
0 1
X, = X, +:/0 X+ ---. (40)

Similarly, we integrate eqn (19). The result is
] 0 t
0.5ve,; = —[H QRS +R @S2+ - A+ fS 4232 24 -, (@1)
where

k+1

I- &
0.5V50 = 12 = Ersaldi= 5 Paal Autvboag 4 =v2XJG. @ #B).  (42)

The equilibrium equation (I 1) can be written, after dividing by G
6333/G = —Bre;— Biey—X,/G. (43)

Following the method used above, we also have

3 0 1
03,/G = “[h’/(2!22)fls+h‘/(4!2‘)fa+ ol U422 4 (44)
where
k+ 1 & _k _k k
63,/G = fy = —Bre;3—Biey— X,/G. 45)

)k(, is defined by

Xy = Xyt 2/ Uyt oo (46)

All the relations just obtained will be used to estimate the components of the strain
field.

3. ESTIMATES

It is well known that in flexible bodies like plates or shells the transverse stresses are
of a lower order than the stresses parallel to the middle surface (Koiter, 1959). The concrete
estimates of the magnitudes of the stresses o, and a5, are the following (John, 1965 ; Koiter,
1967):

a3 = 0(E7e), 47
Oy3 = O(Eﬂzs). (48)

The quantity n represents the small parameter defined by



n=~hlL, {49)

in which L is the smallest wavelength of deformation patterns. The definition of L is given
by the relations

max (/AL 1B flLIB, [y < IfIVL. (50)

! 2
VX

where f is a differentiable function.
The quantity ¢ is the maximum strain parallel to the middle surface and it is specified
by

£ = max (Bl Hleg). (1.f = 1.2). (5h)

In order to determine the estimates of the two-dimensional components of strains we
muake use of the refations (47) and (48). In addition. for the body forces we assume that

Y./G = 0/, (52)
k
XJG =00 e/, k=12, (53)
i3 ﬁ’ .
max (|X/dple 1/p) = 0(Gr'ei). (xf = 1.2), (54
k > .
YVG =00 e, k=001, ., (53)

and for the rotation about the normal vector 2 we assume that

ol = 0(ge/h). (56)

max (1)) sl 110y ) = 00r*e/hY)., (2 = 1,2), (57)

viat

After dividing both sides of (47) and (48) by G and setting = = {}, we obtain

;2,; = 0(L/Gne). (58)
8'3_; = O(E,'"G'IZII). (5())

Muking use of the well known inequality ja+ 5] < ||+ 1], we bring eqn (45) into the
following relation:

1614/Gl < 1B, 833l +1Bs #usl +1X,/Gl. (60)
By means of (50) we can write the inequality
B, &3] < h/LIE . (1)
and with the aid of (49) and (58) we arrive at the following estimate
hB; £,y = 0015, (62)

Finally. making usc of (55} yiclds
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ho33/G = 0(n%). (63)
Similarly. we can derive from (31) the following relation:
he» = 0(n%e). (64)

By the use of (38) we can estimate tll,] and é,;. It follows from (50), (51), (59), (63), (56).
(64). (52) and (53) that the result of the estimation is

Heg, = 0(ne). k=12. (65)

Assuming first K = 0 and then k = 1 in (34) and taking into account (51), (59) and (63), we
find

Ky, =0@). k=0,1. (66)

Similarly, assuming first k = 0 and then & = 1 in (32) and (33) and taking into account (65)
and (66), we have

h"::,,, =0(n), k=23, (@f=12). (67)

Considering again eqns (45) and (31) with &k = | and & = 2, and then using (65) and (55).
we obtain the following estimates:

W6\/G = 00%), k=23, (68)

Ko =00, k=23 (69)

When we consider eqn (34) with & = 2 and k = 3, and make use of (67) and (68), this gives
Wy = 00n%), k=2.3. (70)

Next, the consideration of (38) with & = 2 and k = 3, together with (67), (68), (69) and (53)
allows us to write

Wty =0(ne), k=3,4. (an

Finally, considering (32) and (33) with & = 3 and k = 4, and making use of (70) and (71)
yields

W, =00'c), k=4,5 (@f=1,2). (72)

It is apparent that the estimation procedure presented above allows us to write

)

ey = kz A ktea+00r%), (B = 1,2). (13)
=
=Y FIKE, +0(n’). (74)
k=0

The strain field (73)-(74) is a starting point of the construction of the plate theory.
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4. CONSTRUCTION OF PLATE THEORY

The strain field given by (73) and (74) can be further transformed without any change
in the accuracy. When the conditions that the transverse shear strains e,, vanish on the top
and bottom surfaces of the plate are applied to (74). we obtain

he,y = 0(n'e). (75)
B 8e,y = — &, +0(7%). (76)

It follows from these relations and (74) that
€1 = (1 =423 ) +0(n%). )

Instead of ¢, we introduce a new measure of the shearing strain €, defined by

52 ik
€y =€’13f L’z}/gﬂd:/ J 6’31/25,\ dz. (78)
~he 2 li ~-h 2
Thus
Gy = SIA(1 =423 hNE 4 00 e). (79)

Considering (42) with & = 0 and & = 1, and by the use of (75), (76), (59). (63), (64) and
{53), we have

[+]
Bonafdy = — vyl A, +0.5vX /G +00 e/h), (2 # [, (80)

a';_”',;’.»{, = —4»'/')’132,_; +001 /1), (81)

After applying (80) and (81) to (32) and (33), where & = O and & = |, and estimating these
equations with the help of (54) and (57), and then using (76), we arrive at

Ry = 0(n'e), (0. f=1,2), (82)
b= =8I (1 =v/2) Byl Au —Ena/p) FOOPEMRY), (2 # B), (83)
fra= =8B (1 =vj2) (Bl £xet Bi &) +00 /i), (84)

It follows that the strains paralicl to the middle surface are of the form

ey = 2,,,+:é,,,+:3/6i‘:,,,+0(n‘z:). (.= 1,2), (85)
where &, is defined by (83) and (84). ' .
The displacement field which is needed for the complete representation of the strains
(79) and (85) is of the form
u, = 2,+:z!1,+:x;’6i§¢,. (86)

Uy = 3;. (87)

In view of {(30}. (81) and (76), we have
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U, = —8/h*(1=v/2)e,3+0(n’e/h7). (88)

[t should be noticed that only five parameters of the displacement field (3;, 82, z'zl, &1,33)

are independent.

Introducing the strain field (79) and (85) into the three-dimensional strain energy and
after performing the integration with respect to z, the two-dimensional form of this energy
is

U, = %L [EJ(1=v?)[R(E} + 2VE, E22 4 E32) + AP /1262, + 2v8 £+ ED:)

+h3[240(8, 11+ Ve B+ VELE 1+ 62380 ) +Hh 16,1 28(EE, + 208, 2+ E3)])

+ GlhE + R 1283,+ h5[ 2408 18, 2+ h" 16,1283, + S/6h(E1, + £3,)] + O(Ehn*e?)} dQ,  (89)

where dQ is an elementary area of the middle surface.
The resultants in terms of the strain components are defined by

Ny = U, Je8 ... (90)

The equations of motion and the appropriate boundary conditions can be derived
from the principle of virtual work for the elastodynamic problem

i
J; ©WU-0T)dt =0, on

where

0 o 9 1 ! i } 3 3 3 33
U= [ N+ Nyt +Npg i+ Mpen+ Myt + Mg+ M6+ Mg+ M2y,
2

+N, 3g|3+N23323+11(3|+Cg:3)+32(52+¢‘gzs)} dQ, (92)
¢ = 4(2—v)/h?, (93)
T= éf (U} + 4l + 1) + h3 11206, + ud,)
i¢]
R 1280(u, iy + Uy ur) +h 16,1282, + 4l )] Q. (94)

Here 1, and A, are the Lagrange multipliers and p is the mass density of the plate.
From (91) we obtain the following equations of motion :

G.(N) = phity . 95)

(AN +ci)] +[A (Vs +cd)) s = phity e, (96)
G (M) = (Noy+c2) = ph*[12(sy o+ h2 /401, ), ©7)
Go(M) = iy = ph’ /4800, o+ 10h2/3368 ), (98)

with the subsidiary conditions
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3 0
Uy +CEyy = 0. (99)
where
GI(F) = F;x.zé"‘Iz-{Fn—Fﬁﬁ): [)3"}‘1:;3”8;;:{1;—2[;3{};):, (1 #ﬁ). (!OG)

It follows thut the boundary conditions are equivalent to the specification of the
displacement boundary conditions or the resultant boundary conditions:

% = constant x; = constant
"0 . 0
t, or N, w,or Ny,
[ B a B
- 0r .V, i, Or N,
u i . i 0 . * .
L Or i\!x*}'(’(/ﬁg +“ g::/{“{:) Iy or 1V3+‘C(lﬁ:+ 1‘[;1;/4‘1;)
1 \ 1
u, or M, lllor/\'!;g"(‘/"{n
i t !
wsor My,—cM,, uor M,
i i 3 3
uyor M, usor M, (1o

If the edge curve does not coincide with the lines ' = constant or «® = constant these
conditions have to be appropriately transformed.

The Lagrange multiplicrs 4, and 4, can be climinated from the cquations of motion
in a similar way to that in which the shear forees are eliminated from the equations of the
classical theory of plates. Morcover, using the subsidiary condition (101) the parameters
l:, can also be climinated from these equations and the boundary conditions,

5. SUMMARY AND CONCLUSIONS

Using the estimates of the strain field the new refined version of the lincar theory
of tsotropic plates is constructed. The theory is expressed in terms of five independent
displacement parameters and ensures the relutive accuracy ol the strain energy of the order
of #* in comparison to the accuracy of the order of 47 in the classical theory of plates. The
accuracy is ensured provided the variability of the rotation @ about the normal vector 1 on
the middle surtace is appropriately lower than that of the two-dimensional components of
strains. It follows that if the plate is in the bending state the accuracy is always of the order
ol #* The equations of motion are derived with the help of the variationally consistent
method.

From the present study we can conclude that the consistent higher-order theory is
bused on the displacement field (86)-(87) together with the relation (88). In some theories
{Mushtari, 1939 Jemiclita, 1975, Lewiaski, 1987), additional terms in the displacement
ficld were included. It follows that in the sense of the energy criterion, the inclusion of those
additional terms does not improve the present theory, Furthermore, the elimination of the
parameters x‘:, has to be done according to egn (88). In view of the present analysis, the
mcthods of elimination of i}, proposed carlier by Mushtari (1959), Kgczkowsk: (1968),
Jemielita (1973). Reissner (1973), Levinson (1980) and Lewinski (1987) are incorrect. The
coeffictent {1 —v 2} in (88) cannot be approximated by 1.

The form of cgn (88) can be confirmed by the use of the results of Lur'e {(1953). In
that analysis a plate which is free from loads on the top and bottom surfaces and subjected
to antisymmutric loads (so-called bending loads) on the edge of the plate is considered. The
exact three-dimensional solution of the biharmonic stress state for u, reads (Lur’e, 1955,
section 4)
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0 ) , 0
U, = —:u31+[(2—V):3/’6—h':/4]/(1 —V)(V u))..v*

where x—an in-plane coordinate, V*—the Laplacian, 13,——the normal displacement of the
middle surface of the plate which satisfies the biharmonic equation. This type of solution
was also shown by Cheng (1979).

When we put

ty = — g —h A=WV,

2
it gives
u, = :z‘l,+:3/6t34,.
where
fy = —8/h* (1= v/2)t,s.

We notice that the above equation has the same form as (88). The additional two stress
states which complete the solution of this problem are of appropriately lower order in
comparison to the biharmonic stress state (Arksentian and Vorovich, 1963). Morcover,
these two types of stress states vanish in the interior domain of the plate.

It follows that the governing equations of the present theory differ from those proposed
carlicr, though the order of the equations of motion is the same as that of Reddy (1984).
The problem of anisotropic plates with increased transverse shear deformability will be
discussed in a forthcoming paper.

In the analysis of the estimations (Section 3), the effect of loads distributed over the
faces of the plate can be casily incorporated into the appropriate equations as it was shown
for the case of shells in Blocki (1982).

The present theory has been used in an analysis of free vibrations of discs. This problem
is the subject of Part 1 of this paper (Rzydkowski, 1992).
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